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Abstract

easurement and forecasting of volatility and income correlation are achieved by non-parametric
Mmethods using high-frequency price data. Due to accurate calculations of conditional volatility

and correlation forecasting, it is possible to correctly identify financial derivatives and
make risk decisions and relative asset allocation decisions. This article systematises the methods for
modelling the volatility of financial asset returns, considers the theoretical foundations of the generalised
autoregressive conditional heteroscedasticity model, and predicts and analyses the volatility of US stock
indices and stocks using high-frequency volatility estimates (realised volatility indicators). The stock
indices studied are the Dow Jones Industrial Average (DJI), Standard and Poor’s 500 (SP500), and
the Nasdaq Composite Index (NASDAQCOMP). Stocks analysed include stocks in Microsoft, Bank
of America, and Coca-Cola. The results of the study support conclusions regarding the effectiveness
of volatility estimators within two Bank of America volatility forecasting models, the superiority of
the HAR-RV model for trading options in a specific market, and the best model for Microsoft. Thus,
systematic analysis of news information is useful for predicting the volatility of returns on financial assets,
but its effectiveness depends on the individual company. Future studies should explore the usefulness of
the systematic analysis of news information in predicting the volatility of returns on financial assets in
other markets and for other asset classes.
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AHHOTAUA

3MEpEHUE H MPOTHO3UPOBAHUE BOJATHIBHOCTH W KOPPEJSIIHA JOXOJHOCTH aKTHBOB

OCYIIECTBIISIETCS  HEMapaMEeTPUUYECKUMH  METOJaMH, Ui  KOTOPBIX  HCHOIB3YIOTCS

BBICOKOYACTOTHBIE IICHOBBIE TaHHBIC. bi1aroiapst TOYHBIM MOIETISIM POTHO3UPOBAHUS Y CITIOBHOM
BOJIATUJIBHOCTA M KOPPEJSAIMH BO3MOXHO KOPPEKTHOE OMpeieNieHue MPOU3BOAHBIX (MHAHCOBBIX
WHCTPYMEHTOB, yMpaBJIeHHE PUCKAMU U MPHUHITHE PEIICHUH OTHOCUTEIBHO paclpeaelieHUs] aKTHBOB.
B nanHO# cTaThe mMpoBeACHA CUCTEMATHU3AIMS METOIOB MOACIUPOBAHUS BOJIATUIHBHOCTH JOXOJIHOCTH
(MHAHCOBBIX aKTHUBOB, PACCMOTPEHBI TeopeThueckue ocHoBbl obOmel moxenu GARCH, a rtakxke
CIPOTHO3UPOBAHBI U TMPOAHATM3UPOBAIIN BOJATUIBHOCTh (DOHIOBBIX MHAEKCOB u akumii CIIA mpu
MTOMOIIM BBICOKOYACTOTHBIX OILICHOK BOJATHIBHOCTU (MIOKA3aTeNH pPEaTHn30BAHHOW BOJATUIBLHOCTH).
NzygaempiMu (poHAOBBIMU WHIACKCAMU siBIsitoTca wHIEKCH Dow Jones Industrial Average (DJI),
Standard and Poor’s 500 (SP500) u Nasdaq Composite Index (NASDAQCOMP). Akuuu, ¢ npyroi
CTOPOHBI, BKIIOUAIOT akiuu Microsoft, Bank of America u Coca-Cola. PesynpTaTamu uccnemnoBanus
CTallid BBIBOABI KacaTenbHO A(P(EKTUBHOCTH OICHIIMKOB BOJATHIBLHOCTH B paMKax IBYX MoOJeiel
MIPOTHO3UPOBAHUS BoNATWIBHOCTH akiuii Bank of America, npeBocxoactBo HAR-RV monenu s
TOPTOBIM OMIIMOHOB ONPEEICHHOTO PhIHKA, HAMIEH HaWTy4Illas MOJENb s akiuii Microsoft. B csete
MIPUBE/ICHHBIX BBIIIE PE3YIbTATOB OBLI C/IEAaH BBIBOJ O TOM, YTO CUCTEMAaTUYECKUI aHATTU3 HOBOCTHOM
nH(pOpMalUK TIONIE3eH AJI MPOTHO3UPOBAHMS BOJATHIBHOCTH JOXOJHOCTU (DMHAHCOBBIX AKTHBOB,
OJIHAKO ero 3(QQPEeKTUBHOCTH 3aBUCUT OT KOHKPETHOW KOMIIaHWHU. BBUIO pekoMeHa0BaHO, YTOOBI B
OyIyluX UCCIeAOBaHUAX N3ydallach MOJIE3HOCTh CUCTEMATHYECKOT0 aHaIu3a HOBOCTHOM MH(OpMauu
JUISL TIPOTHO3UPOBAHUST BOJATUILHOCTH JOXOTHOCTH (DMHAHCOBBIX aKTUBOB Ha JPYTUX PHIHKAX U JUIS
JPYTHUX KJIacCOB aKTHUBOB.

KiarwudeBble cioBa: BOJIaTUJIBHOCTBb, BBICOKOYACTOTHBIC OLCHKH BOJIATUJILHOCTH, MCETOABI MOACIHMPOBAHUA H
MPOTHO3UPOBAHUS, BOJATHUIIBHOCTh JOXOAHOCTH, (PMHAHCOBBIC aKTHBBI, (HOHIOBBIC WHAEKCHI, akiuu CIIIA,
nH(pOopMaIOHHAas cpefa.
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Development of Instrumental Approaches to Forecasting the Volatility of the Return of Financial Assets

1. Introduction

The trend towards measuring and predicting volatility and correlation of asset returns using
non-parametric methods has two directions for study: continued research and development of methods
for using volatility information in high-frequency data, and modelling and forecasting volatility in a
multidimensional environment that is relevant to practical financial economics. The realised volatility
approach, which is the most obvious nonparametric measure of volatility, deals with both directions.
The benefit is the lack of modelling of intraday observations of returns, which allows for the accurate
measurement and prediction of volatility in multidimensional environments. The inherent problem with
modelling and forecasting conditional volatility turns is that volatility is unobservable—what is found—
modelling what should be indirect. The problem of lagging returns volatility is frequently addressed
by inferring volatility based on characteristic assumption parameters, using, for example, autoregres-
sive conditional heteroscedasticity—generalised autoregressive conditional heteroscedasticity “ARCH-
GARCH?” or a stochastic volatility model. Therefore, it is necessary to develop alternative approaches
that would allow for expanding the available price indicators with additional data available for prompt
receipt and research. Such data are indicators of the news, information, and digital components that have
an impact on financial market participants (Kulakov, 2004a; Kulakov, 2004b).

The main aim of this study is to develop instrumental approaches to forecasting the volatility of re-
turn on financial assets. In common parlance, volatility refers to fluctuations observed in a phenomenon
over time. This is the change in the results of an uncertain variable, such as the return on assets. Volatility
is a statistical measure of the degree to which a trading price changes over a given period. In terms of
returns on financial assets, volatility is the standard deviation of returns on investments on an annualised
basis. Alexander (2008) defined volatility as “an annual measure of dispersion in a stochastic process
that is used to model logarithmic returns”. Andersen et al. (2010) classified approaches to the empirical
quantification of volatility into two categories: procedures based on the evaluation of parametric models
(parametric measurement and volatility modelling), and direct non-parametric measurements (non-para-
metric measurement and volatility modelling).

Table 1 summarises the various methods for empirically quantifying return volatility within para-
metric and non-parametric approaches.

Table 1. Approaches to measuring and modelling the volatility of returns on financial assets

Source: compiled by the authors

Parametric measurement and volatility | Non-parametric measurement and volatility modelling

modelling
Discrete-time parametric volatility Measures of instantaneous volatility, #—0:
models

1. ARCH filters and smoothers (ARCH filters and smoothers are used to
Continuous time parametric volatility | measure instantaneous volatility; filters only use information up to time
models o’ .1 =t while smoothers are based on 7 > t.

Implied volatility based on a parametric | Implemented measures of volatility, h > 0

model
1. The implemented volatility methods directly measure conditional vola-

tility over fixed time intervals.

2. They can be classified based on whether the notional volatility mea-
surement uses only the price data contained within the [t-h,t] interval
itself, or whether filtering/smoothing techniques are used to also include
returns outside [t-h,t].

3. The most obvious non-parametric measure of volatility is the “ex-post
return squared spanning the time interval [t-h,t], that is, measures of
realised volatility”.

Methods for parametric measurement of volatility

Volatility models in continuous time Discrete Time Models
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Continuous diffusion along the sampling
path

1. Invariant diffusion in time

2. Ornstein-Uhlenbeck (OU) and Cox-In-
gersoll-Ross (1985) processes (CIR)

3. Square root volatility model

Hopping diffusions and processes con-
trolled by the levy

ARCH-GARCH models

1. ARCH (m) (Engle, 1986)

2. GARCH (1,1) (Engle, 1986)

3. GARCH (p,q)

4. Symmetric normal GARCH Model

5. Asymmetric GARCH models

5.1 GJR-GARCH (Glosten, 1993)

5.2 Exponential GARCH (E-GARCH) (Nelson, 1991)

5.3 Asymmetric power ARCH model (“apARCH”) (Ding, 1993)
5.4 Component sGARCH model (‘csGARCH’) (Lee and Engle, 1999)
5.5 GARCH family model (“fGARCH”) (Hentschel, 1995)

6. Abnormal GARCH models

6.1 Student tGARCH (Bollerslev, 1987)

6.2 Normal mixture GARCH

6.3 Markov switching GARCH (Hamilton and Susmel, 1994)

7. Multivariate GARCH models

7.1 The VECH model presented by Bollerslev et al. (1988)

7.2 Baba-Engle-Craft-Kroner (BEKK) model formalised by Engle and
Kroner (1995)

7.3 Factorial and orthogonal GARCH models

7.4 The class of constant conditional correlation (CCC) models proposed
by Bollerslev (1990)

7.5 Dynamic conditional correlation (DCC) proposed by Engle III and
Sheppard (2001)

Stochastic volatility models
1. Autoregressive volatility model, or SARV(p) model:
1.1 Lognormal stochastic autoregressive volatility model

1.2 Stochastic autoregressive square root model or SR-SARV

Approaches to Modeling Financial Asset Return Volatility Using High-Frequency Data

Method/Evaluator

Description

Realised variance or realised volatility
(rRVar) (Andersen, 2003)

This estimator calculates daily realised variance or realised volatility (RV)

Realised covariances using subsample
averaging (rAVGCov)

It calculates realised variances by averaging RV over partially overlap-
ping grids (Zhang et al., 2005)

Modulated realised covariance (rMRCov)

The modulated realised covariance computes a univariate or multivariate
pre-averaged estimator by Hautsch and Podolskij (Hautsch and Podolskij,
2013).

Two-time scale of covariance estimation
(rTSCov)

It calculates the covariance matrix on a two-time scale (Zhang et al.,
2005; Zhang, 2011).

Reliable estimation of covariance on a
two-time scale (rRTSCov)

It calculates the robust two-time covariance matrix (Boudt and Zhang,
2015)

Implemented kernel estimator (rKernel-
Cov)

It calculates the realised covariance using the kernel estimator

Realised two power covariance (rBPCov)

It calculates the realised BiPower covariance (rBPCov) (Barndorff-Niel-
sen and Shephard, 2004)

Minimum realised variance (rMinRVar)

It calculates rMinRVar (Andersen et al., 2012)

Median realised variance (rMedRVar,)

It calculates rMinRVar (Andersen et al., 2012)

Threshold Covariance (rThresholdCov)

It calculates the threshold covariance matrix (Mancini and Gobbi, 2012)

Hayashi-Yoshida Covariance (tHYCov)

It calculates the Hayashi-Yoshida covariance estimate (Hayashi and
Yoshida, 2005)

Sustain.
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Realised appearance weighted covariance | It calculates the realised distance weighted covariance (rOWCov) (Boudt
(rOWCov) and Zhang, 2015)

Realised semi-dispersion of high-frequen- | It calculates the realised semivariances (Barndorff-Nielsen et al., 2008)
cy reciprocal series (rSVar)

Realised range based variance (RRV) It computes a range-based realised estimator (Christensen and Podolskij,

2007)
Quantile-based realised variance (QRV) It calculates the quantile realised variance (Christen et al., 2010)
Estimating duration based realised vari- It calculates the long-term realised variance (Andersen et al., 2009)
ance (DRV) in Andersen, Dobrev, and
Schaumburg (2009)

Let o7 and o, be the variance and volatility of the market variable on day n, respectively. Let S
denote the value of the variable at the end of the i-th day. For o, , there will be dispersion and volatility
will rush to day n respectively. Let § denote the value of the variable at the end of the i-#4 day. Let u, be
the continuously added variable returns during the i-t4 day:

S,
c=In——(1 1
ul n Si_l ( ) ( )
An objective estimate of the daily variance, o~ , based on the most recent observations at u, is:
1 m 2
o, = -1 ‘.:](”,- —%) (2)

Let’s make the following changes to the above formula for estimating the variance, o, ,:

- u, is defined as the percentage change in the market variable between the end of day i-1 and the
end of day i, so that

u,‘ — i i-1 (3)

- U= 0;
- m-1 is replaced by m.

The above changes simplify the original variance formula to:
ol =3 4

However, there is still a problem with this. The problem with the above simplified formula for
calculating the variance is that it gives a high weight density u’ , ,u,...., u>, ..., (i.e. profitability). Our
goal is to conditionally estimate volatility, and predictively assign large amounts of losses. The model
that adopts this is:

O-j = Zlaiuj—i (5)

The variable ¢, is the amount of weight assigned to the observation i days ago. «, are positive
and must sum to one, that is:

Z:’;al. =1 (6)

An extension of the idea in the above weighting schemes is to assume that there is a long-term av-
erage variance and that some weight should be given to it. The result is a model that takes the following
form:

12 Sustain. Dev. Eng. Econ. 2023, 2, 1. https://doi.org/10.48554/SDEE.2023.2.1
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oy =yV,+Y." au, (7

where V/, is the unconditional variance and ¥ is the weight given to ¥, . The sum of the weights
must be equal to one, so we have

r+ ZZlai =1 )

The above model is called the ARCH(m) model. It was introduced by Engle (1982). It estimates the
variance based on the long-term mean variance, V, , and m observations. If we @w=yV,, the ARCH(m)
model becomes

I

" gl 9)

i n—i

2_
o, =0+

A generalisation of the above model is the GARCH model. The GARCH model generalises En-
gle’s (1982) ARCH model. In GARCH (1,1), & is calculated based on the following equation:

ol =V, +au’_ + Bo., (10)

where A is the weight assigned to V, , a is the weight assigned to u, , , and B is the weight as-
signed to o, . The sum of the weights must be equal to one, so it follows that:

y+a+p=1 (11)

If we set o=y V,, GARCH(1,1) becomes:

cl=w+au _ +fo.. (12)

The given estimated values w,a and B, y can be calculated as:

The long-term variance ¥, will then be given as:

v, =2 (14)
/4
To ensure a stable GARCH (1,1) process, it is required that:
a+p<l1 (15)

“(1, 1)” in GARCH (1,1) indicates that o is calculated based on the most recent observation u*

and the most recent variance estimate, that is, G,f is calculated «. |, and o, ,. The general GARCH (p, q)
model computes 6 n"2 using the most recent p observations on u*2 and the most recent q variance esti-
mates (Hull, 2018). The main difference between parametric and non-parametric approaches is related to
the choice of the time interval to which the measure of volatility refers, for example, a discrete interval,
where h > 0, or a point in time (instantaneous) measure, where h — 0.

Considering the ARCH-GARCH models, there are times when volatility is unusually high, and
there are times when volatility is unusually low. There is extensive empirical evidence for the clustering
of volatility in financial markets, dating back to Mandelbrot (1963). Volatility clustering has significant
implications for option pricing, hedging, and risk measurement (Andersen et al., 2006.; Kornikov et al.,
2002). A big shock to markets leads to changes in volatility and further increases the likelihood of an-
other big shock. This must be considered when pricing options and assessing portfolio risks (Egorova,
2002; Senko, 2001).

Sustain. Dev. Eng. Econ. 2023, 2, 1. https://doi.org/10.48554/SDEE.2023.2.1 13
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GARCH models have been introduced to capture the clustering of returns volatility (Chekulaev
etal., 2004). Given that GARCH models reflect volatility clustering, their predictions are not equal to the
current estimate. GARCH volatility can be above or below average in the short term, but as the forecast
horizon increases, GARCH volatility forecasts converge towards long-term volatility. The advantage of
GARCH is that it calculates short- and medium-term volatility forecasts based on a robust econometric
model. GARCH models have been very successful in predicting notional return volatility. They have
been finalised and expanded to include additional features. Traditional GARCH models have been ex-
tended by incorporating implemented measures into the GARCH equation to enhance their predictive
capabilities. Important works in this direction include Engle and Gallo (2006), Hansen (2012), Shepard
and Sheppard (2010).

2. Materials and Methods

We estimated, predicted, and analysed the volatility of US stock indices and stocks using existing
high-frequency volatility estimates (realised volatility measures). The stock indices studied are the Dow
Jones Industrial Average (DJI), Standard and Poor’s 500 (SP500), and the Nasdaq Composite Index
(NASDAQCOMP). Stocks include stocks in Microsoft, Bank of America, and Coca-Cola. We also val-
ued call and put options on Bank of America, Coca-Cola, and Microsoft using various high-frequency
volatility forecasts. The study used both primary and secondary data sources. Daily and intraday data on
the prices of the studied stocks and indices, as well as data on option contracts, were obtained from offi-
cial foreign sources that are participants in the US financial market. Secondary data were obtained based
on an in-depth study of scientific periodicals, as well as reference books, monographs, and textbooks in
the subject area of research.

To evaluate and predict the volatility of the above stocks and stock indices, we downloaded his-
torical closing price data (data for 5 minutes) for these assets from Finam (Broker Finam, 2022)1. The
sample data covered the period 2020.02.06-2021.09.02. We also downloaded option chains for Micro-
soft (MSFT), Bank of America (BAC), and Coca-Cola (KO) at the end of each trading day from Yahoo
Finance2. Option chains covered the period from 2021.08.02 to 2021.09.02. To estimate the volatility of
stocks underlying option contracts, this study used the recently proposed high-frequency volatility esti-
mates available in the volatility literature. Table 1 provides data to describe these volatility estimates. To
keep tabular presentations simple, we have abbreviated the above high-frequency volatility estimates as
follows: RV, AV, MRC, TS, RTS, Epa, Par, mTH, BP, MiRV, MeRYV, Thr, HY, OW, SV.do, SV.up, RRV,
QRYV, and mQRV.

To predict realised volatility, this study used Corsi’s (2009) heterogeneous autoregressive model
of realised variance (HAR-RV model). The dynamics of the HAR-RV model are represented by:
R V(d )

t+ld

=C+ﬂ(d)RVt(d) +,3(W)RV;(W) +IB(m)RI/t(m) +€(d) (16)

t+ld

RV is the realised volatility for day .

RVis the average realised volatility for the last week (last 5 trading days), calculated as follows:

RV = é(RV[(‘” + RV + RV + RV +RV,§?) (17)

t

RV is the average realised volatility for the last month (last 22 trading days), calculated as fol-
lows:

RV(m):é(RVt(d)-l-RVt(j)‘F...-{‘RVt(,Q)+RV,(,dQ)1) (18)

t

The HAR-RV model was estimated using the ordinary least squares method, assuming that at

! Broker Finam. URL: http//finam.ru/. Access date 04/10/2022
ZInformation about financial instruments, URL: https://finance.yahoo.com/. Access date 04/10/2022
14 Sustain. Dev. Eng. Econ. 2023, 2, 1. https://doi.org/10.48554/SDEE.2023.2.1
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time ¢ the conditional mean value & (t+1d)"((d)) is zero. For our study, we used a HAR-RV model with
the following characteristics: Type, HAR; Lags, 1 5 22; Window Type, “rolling”; and Maximum lags,
22.

We used a 5-minute series of returns (30,808 5-returns) to estimate and predict stock volatility. We
were of the opinion that almost all information from high-frequency data is contained in 5-minute data,
so we decided to estimate and predict stock volatility using a 5-minute sampling rate. To value option
contracts, this study used the Black—Scholes—Merton formulas for the prices of European call and put
options in determining the price of option contracts.

3. Results and Discussion

The most popular stock indices for tracking the dynamics of the US stock market are the Dow
Jones Industrial Average (DJIA), the Standard and Poor’s 500 (S&P500), and the Nasdaq Composite
(NASDAQCOM). We estimated the realised volatility of these stock indices for the period 2020.01.06-
2021.10.15 using high-frequency volatility estimates. The figures below show volatility estimates ob-
tained for the period under review (Figure 1) (Gayomey, 2022).

Figure 1. DJI daily realised volatility, NASDAQCOMP Daily Realised Volatility, Daily Realised Vola-
tility of SP500

The realised volatility of all three stock indices shows that the US stock market was volatile to-
wards the end of the first quarter of 2020 (volatility of 10% and above). The figure also shows that from
the beginning of the second quarter of 2020 until the end of the evaluation period (2021.10.15), realised
volatility has consistently been below 5%, indicating a stable price level in the market. Estimates, how-
ever, show that volatility changes over time. Volatility clustering was also observed. We then projected
volatility for the Dow Jones Industrial Average, S&P 500, and Nasdaq Composite for the next 30 days
(2021.10.18-2021.11.26) using high-frequency volatility estimates. We also compared the volatility
forecasts with the CBOE Volatility Index (VIX) for the next 30 days (2021.10.18-2021.11.26) to assess
the accuracy of the forecast. The CBOE Volatility Index (VIX) is a popular measure of expected stock
market volatility based on S&P 500 index options. It is based on the prices of options on the SPX index

with the nearest expiration dates and thus gives a 30-day forecast of volatility in advance (Gayomey,
Sustain. Dev. Eng. Econ. 2023, 2, 1. https://doi.org/10.48554/SDEE.2023.2.1 15
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2022a).

Figures 2-4 show the expected annual change in the Dow Jones Industrial Average, Nasdaq Com-
posite, and S&P500 over the next 30 days: 2021.10.16-2021.11.26, according to the realised volatility
approach.

Figure 2. Expected annual change in the DJIA over the next 30 days: 2021.10.16-2021.11.26

Figure 3. Expected annual change in the NASDAQ COMP over the next 30 days: 2021.10.16-
2021.11.26

16 Sustain. Dev. Eng. Econ. 2023, 2, 1. https://doi.org/10.48554/SDEE.2023.2.1
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Figure 4. Expected annual change in the SP500A index over the next 30 days: 2021.10.16-2021.11.26

According to Figures 2—4, for the DJI and NASDAQCOMP indices, the realised volatility (RV) es-
timate had the lowest forecast error compared to the CBOE Volatility Index, while for the SP500 index,
the realised core estimates (Epa, Par, and MTH) performed the best. The results in the tables also show
that the projections for the realised volatility and the realised core estimates for the three indices are,
in most cases, very close to the forecast for the CBOE volatility index; that is, the forecast of these two
estimates is very similar to the CBOE Volatility Index forecast. The tables also show that more high-fre-
quency volatility estimators provide lower volatility forecasts for the US stock market during the period
under review. Consider specific examples (Gayomey, 2022b).

Estimating and predicting the volatility of Bank of America, Coca-Cola, and Microsoft stocks

We predicted and analysed the annual volatility of these stocks. The figures below show the imple-
mented volatility estimates for Bank of America, Coca-Cola, and Microsoft for the period 2020.01.06—
2021.10.15 (fig. 5).
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Figure 5. Daily realised volatility for Bank of America, for Coca-Cola, and Microsoft

The charts above show the realised volatility, confirming the volatility situation in the US stock
market at the end of the first quarter of 2020, which remains relatively stable during the remainder of the
forecast period. Of all three stocks, Microsoft shares experienced the least volatility during the remain-
der of the forecast period (Gayomey, 2022a).

Figure 6 shows the annual volatility forecast for Bank of America, Coca-Cola, and Microsoft.

Figure 6. Annual volatility forecast for BAC, KO, and MSFT: Realised volatility metrics
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Figure 6 shows that the minimum volatility prediction for all three stocks is given by a modulated
realised covariance (MRC) estimate. The table also shows that the maximum volatility forecast for Bank
of America, Coca-Cola, and Microsoft was derived using realised variance (RV), realised core (Epa,
Par, and mTH), and realised range (RRV) volatility estimates, respectively. Table 5 further confirms that
all volatility estimates project high volatility for Bank of America (annualised volatility forecast of at
least 19% and a maximum of 29%). It can also be seen that Coca-Cola’s year-on-year volatility forecast
across all volatility estimates is less than 19%, with a minimum volatility forecast of 10%. For Micro-
soft’s stock, the year-on-year volatility forecast ranges from 13.8% to 22%. The forecast above clearly
shows that Bank of America is expected to be more volatile over the coming year compared to other
stocks, while Coca-Cola is expected to remain more stable over the same period (Gayomey, 2022b).

4. Conclusion

The purpose of this article was to develop methods for modelling and forecasting the volatility of
financial asset returns based on the assessment of high-frequency data and the dynamics of the informa-
tion environment. To this end, we reviewed and systematised theoretical and methodological approaches
to measuring and forecasting the volatility of return on financial assets. We also estimated, predicted,
and analysed the volatility of stock indices and US stocks using existing high-frequency volatility es-
timates (realised volatility measures). The stock indices studied are the Dow Jones Industrial Average
(DJI), Standard and Poor’s 500 (SP500), and the Nasdaq Composite Index (NASDAQCOMP). Stocks,
on the other hand, include stocks in Microsoft, Bank of America, and Coca-Cola. We also valued call
and put options on Microsoft, Bank of America, and Coca-Cola using various high-frequency volatility
forecasts.

The results of the analysis and systematisation of theoretical and methodological approaches to
measuring and forecasting the volatility of the profitability of financial assets have shown that the exist-
ing approaches and methods for assessing and forecasting the volatility of the profitability of financial
assets have some limitations that make the use of these methods for predicting volatility unsatisfactory.
In particular, within the framework of the GARCH model and stochastic volatility, the following are
salient:

- Volatility is usually derived from daily returns squared, which are objective but noisy estimates
of daily conditional volatility.

- High-frequency data are rarely used.
- Evaluation of GARCH and stochastic volatility models is difficult.
- Evaluation of these models often gives unsatisfactory results. Forecasts are inaccurate.

- Standardised returns usually have fat tails, which leads to the search for suitable error distribu-
tions that can adequately reflect the empirical distributions of returns.

- Multivariate modelling of volatility and correlation can be extremely complex, and practical
models are often only applicable to very small dimensions.

- These volatility methods do not take into account changes in the news background of the digital
information environment.

In the high-frequency volatility approach (HAR-RV model), the realised volatility plotted from the
highest frequency data should give the best possible estimate of the cumulative volatility, that is, /v as
m —oo. However, in practice, the sampling rate is limited by the actual supply or transaction frequency.
Moreover, very high-frequency prices are affected by market microstructure, such as supply and demand
rebound effects, price discreteness, etc., leading to bias and inconsistency in realised volatility. These
methods for assessing volatility also do not consider changes in the news background of the digital in-
formation environment.

Sustain. Dev. Eng. Econ. 2023, 2, 1. https://doi.org/10.48554/SDEE.2023.2.1 19



https://doi.org/10.48554/SDEE.2023.2.1

Development of Instrumental Approaches to Forecasting the Volatility of the Return of Financial Assets

These findings prompt the conclusion that the systematic analysis of news information is useful
for predicting the volatility of returns on financial assets, but its effectiveness depends on the individual
company. Future studies are encouraged to explore the usefulness of the systematic analysis of news
information in predicting the volatility of returns on financial assets in other markets and for other asset
classes.
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